\(\int \frac {(d+e x)^{3/2}}{(a d e+(c d^2+a e^2) x+c d e x^2)^2} \, dx\) [2014]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 101 \[ \int \frac {(d+e x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2} \, dx=-\frac {\sqrt {d+e x}}{\left (c d^2-a e^2\right ) (a e+c d x)}+\frac {e \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {c d^2-a e^2}}\right )}{\sqrt {c} \sqrt {d} \left (c d^2-a e^2\right )^{3/2}} \]

[Out]

e*arctanh(c^(1/2)*d^(1/2)*(e*x+d)^(1/2)/(-a*e^2+c*d^2)^(1/2))/(-a*e^2+c*d^2)^(3/2)/c^(1/2)/d^(1/2)-(e*x+d)^(1/
2)/(-a*e^2+c*d^2)/(c*d*x+a*e)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {640, 44, 65, 214} \[ \int \frac {(d+e x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2} \, dx=\frac {e \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {c d^2-a e^2}}\right )}{\sqrt {c} \sqrt {d} \left (c d^2-a e^2\right )^{3/2}}-\frac {\sqrt {d+e x}}{\left (c d^2-a e^2\right ) (a e+c d x)} \]

[In]

Int[(d + e*x)^(3/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^2,x]

[Out]

-(Sqrt[d + e*x]/((c*d^2 - a*e^2)*(a*e + c*d*x))) + (e*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[c*d^2 - a*e
^2]])/(Sqrt[c]*Sqrt[d]*(c*d^2 - a*e^2)^(3/2))

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 640

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{(a e+c d x)^2 \sqrt {d+e x}} \, dx \\ & = -\frac {\sqrt {d+e x}}{\left (c d^2-a e^2\right ) (a e+c d x)}-\frac {e \int \frac {1}{(a e+c d x) \sqrt {d+e x}} \, dx}{2 \left (c d^2-a e^2\right )} \\ & = -\frac {\sqrt {d+e x}}{\left (c d^2-a e^2\right ) (a e+c d x)}-\frac {\text {Subst}\left (\int \frac {1}{-\frac {c d^2}{e}+a e+\frac {c d x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{c d^2-a e^2} \\ & = -\frac {\sqrt {d+e x}}{\left (c d^2-a e^2\right ) (a e+c d x)}+\frac {e \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {c d^2-a e^2}}\right )}{\sqrt {c} \sqrt {d} \left (c d^2-a e^2\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.99 \[ \int \frac {(d+e x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2} \, dx=\frac {\sqrt {d+e x}}{\left (-c d^2+a e^2\right ) (a e+c d x)}+\frac {e \arctan \left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {-c d^2+a e^2}}\right )}{\sqrt {c} \sqrt {d} \left (-c d^2+a e^2\right )^{3/2}} \]

[In]

Integrate[(d + e*x)^(3/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^2,x]

[Out]

Sqrt[d + e*x]/((-(c*d^2) + a*e^2)*(a*e + c*d*x)) + (e*ArcTan[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[-(c*d^2) + a
*e^2]])/(Sqrt[c]*Sqrt[d]*(-(c*d^2) + a*e^2)^(3/2))

Maple [A] (verified)

Time = 27.44 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.81

method result size
pseudoelliptic \(\frac {\frac {\sqrt {e x +d}}{c d x +a e}+\frac {e \arctan \left (\frac {c d \sqrt {e x +d}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}\right )}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}}{e^{2} a -c \,d^{2}}\) \(82\)
derivativedivides \(2 e \left (\frac {\sqrt {e x +d}}{2 \left (e^{2} a -c \,d^{2}\right ) \left (c d \left (e x +d \right )+e^{2} a -c \,d^{2}\right )}+\frac {\arctan \left (\frac {c d \sqrt {e x +d}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}\right )}{2 \left (e^{2} a -c \,d^{2}\right ) \sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}\right )\) \(111\)
default \(2 e \left (\frac {\sqrt {e x +d}}{2 \left (e^{2} a -c \,d^{2}\right ) \left (c d \left (e x +d \right )+e^{2} a -c \,d^{2}\right )}+\frac {\arctan \left (\frac {c d \sqrt {e x +d}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}\right )}{2 \left (e^{2} a -c \,d^{2}\right ) \sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}\right )\) \(111\)

[In]

int((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/(a*e^2-c*d^2)*((e*x+d)^(1/2)/(c*d*x+a*e)+e/((a*e^2-c*d^2)*c*d)^(1/2)*arctan(c*d*(e*x+d)^(1/2)/((a*e^2-c*d^2)
*c*d)^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 353, normalized size of antiderivative = 3.50 \[ \int \frac {(d+e x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2} \, dx=\left [-\frac {\sqrt {c^{2} d^{3} - a c d e^{2}} {\left (c d e x + a e^{2}\right )} \log \left (\frac {c d e x + 2 \, c d^{2} - a e^{2} - 2 \, \sqrt {c^{2} d^{3} - a c d e^{2}} \sqrt {e x + d}}{c d x + a e}\right ) + 2 \, {\left (c^{2} d^{3} - a c d e^{2}\right )} \sqrt {e x + d}}{2 \, {\left (a c^{3} d^{5} e - 2 \, a^{2} c^{2} d^{3} e^{3} + a^{3} c d e^{5} + {\left (c^{4} d^{6} - 2 \, a c^{3} d^{4} e^{2} + a^{2} c^{2} d^{2} e^{4}\right )} x\right )}}, -\frac {\sqrt {-c^{2} d^{3} + a c d e^{2}} {\left (c d e x + a e^{2}\right )} \arctan \left (\frac {\sqrt {-c^{2} d^{3} + a c d e^{2}} \sqrt {e x + d}}{c d e x + c d^{2}}\right ) + {\left (c^{2} d^{3} - a c d e^{2}\right )} \sqrt {e x + d}}{a c^{3} d^{5} e - 2 \, a^{2} c^{2} d^{3} e^{3} + a^{3} c d e^{5} + {\left (c^{4} d^{6} - 2 \, a c^{3} d^{4} e^{2} + a^{2} c^{2} d^{2} e^{4}\right )} x}\right ] \]

[In]

integrate((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2,x, algorithm="fricas")

[Out]

[-1/2*(sqrt(c^2*d^3 - a*c*d*e^2)*(c*d*e*x + a*e^2)*log((c*d*e*x + 2*c*d^2 - a*e^2 - 2*sqrt(c^2*d^3 - a*c*d*e^2
)*sqrt(e*x + d))/(c*d*x + a*e)) + 2*(c^2*d^3 - a*c*d*e^2)*sqrt(e*x + d))/(a*c^3*d^5*e - 2*a^2*c^2*d^3*e^3 + a^
3*c*d*e^5 + (c^4*d^6 - 2*a*c^3*d^4*e^2 + a^2*c^2*d^2*e^4)*x), -(sqrt(-c^2*d^3 + a*c*d*e^2)*(c*d*e*x + a*e^2)*a
rctan(sqrt(-c^2*d^3 + a*c*d*e^2)*sqrt(e*x + d)/(c*d*e*x + c*d^2)) + (c^2*d^3 - a*c*d*e^2)*sqrt(e*x + d))/(a*c^
3*d^5*e - 2*a^2*c^2*d^3*e^3 + a^3*c*d*e^5 + (c^4*d^6 - 2*a*c^3*d^4*e^2 + a^2*c^2*d^2*e^4)*x)]

Sympy [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2} \, dx=\text {Timed out} \]

[In]

integrate((e*x+d)**(3/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**2,x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {(d+e x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?`
 for more de

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.10 \[ \int \frac {(d+e x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2} \, dx=-\frac {e \arctan \left (\frac {\sqrt {e x + d} c d}{\sqrt {-c^{2} d^{3} + a c d e^{2}}}\right )}{\sqrt {-c^{2} d^{3} + a c d e^{2}} {\left (c d^{2} - a e^{2}\right )}} - \frac {\sqrt {e x + d} e}{{\left ({\left (e x + d\right )} c d - c d^{2} + a e^{2}\right )} {\left (c d^{2} - a e^{2}\right )}} \]

[In]

integrate((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2,x, algorithm="giac")

[Out]

-e*arctan(sqrt(e*x + d)*c*d/sqrt(-c^2*d^3 + a*c*d*e^2))/(sqrt(-c^2*d^3 + a*c*d*e^2)*(c*d^2 - a*e^2)) - sqrt(e*
x + d)*e/(((e*x + d)*c*d - c*d^2 + a*e^2)*(c*d^2 - a*e^2))

Mupad [B] (verification not implemented)

Time = 9.75 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.96 \[ \int \frac {(d+e x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2} \, dx=\frac {e\,\mathrm {atan}\left (\frac {c\,d\,\sqrt {d+e\,x}}{\sqrt {c\,d}\,\sqrt {a\,e^2-c\,d^2}}\right )}{\sqrt {c\,d}\,{\left (a\,e^2-c\,d^2\right )}^{3/2}}+\frac {e\,\sqrt {d+e\,x}}{\left (a\,e^2-c\,d^2\right )\,\left (a\,e^2-c\,d^2+c\,d\,\left (d+e\,x\right )\right )} \]

[In]

int((d + e*x)^(3/2)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^2,x)

[Out]

(e*atan((c*d*(d + e*x)^(1/2))/((c*d)^(1/2)*(a*e^2 - c*d^2)^(1/2))))/((c*d)^(1/2)*(a*e^2 - c*d^2)^(3/2)) + (e*(
d + e*x)^(1/2))/((a*e^2 - c*d^2)*(a*e^2 - c*d^2 + c*d*(d + e*x)))